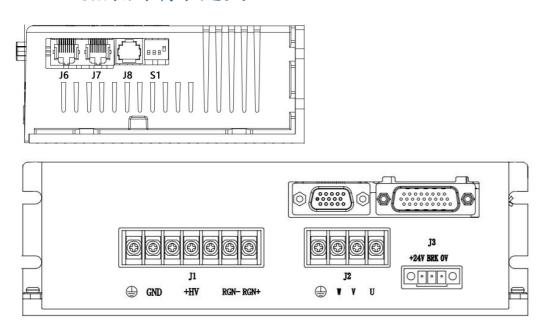

DH直流系列伺服驱动器使用说明书

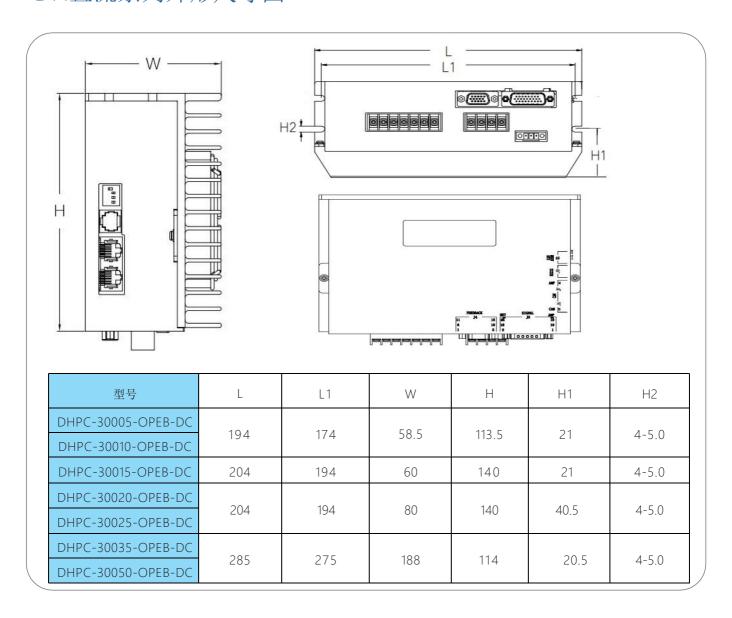
DH direct current series servo driver instruction manual

深圳市欧诺克科技有限公司

DH直流系列伺服驱动器型号说明


备注: 1.驱动器供电电压必须大于或者等于电机额定电压

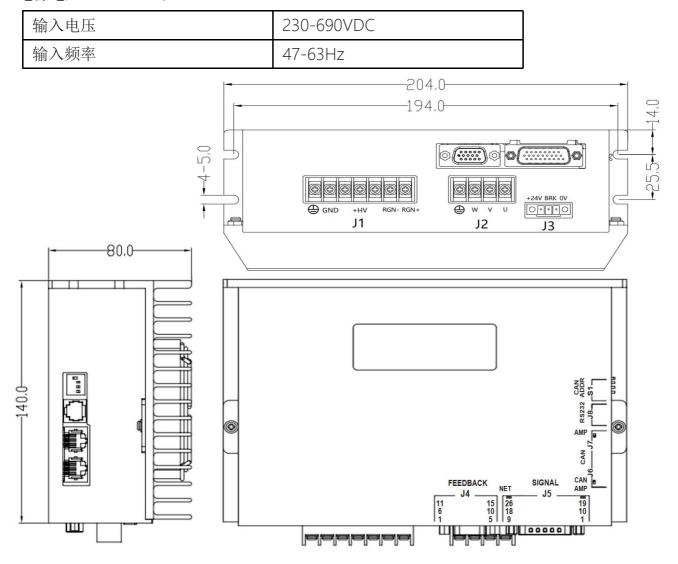
2.驱动器的额定电流必须大于或者等于电机的额定电流


DH直流系列驱动器规格汇总表

驱动器型号	供电电压	连续电流 Amps(Arms)	峰值电流 Amps(Arms)6S	反馈类型	外形尺寸	重量
DHPC-30005-OPEB-DC		5A(3.5A)	15A(10.5A)		10 44113 5450	0.01
DHPC-30010-OPEB-DC		10A(7A)	20A(14A)		194*113.5*58mm	0.9kg
DHPC-30015-OPEB-DC	160VDC~ 390VDC	15A(10A)	37.5(26.5A)	增量式	204*140*60mm	1.2kg
DHPC-30020-OPEB-DC		20A(14A)	60A(42A)		204*140*80mm	1 Oka
DHPC-30025-OPEB-DC	330120	25A(17A)	62.5A(44A)		204**140**60111111	1.9kg
DHPC-30035-OPEB-DC		35A(24.5A)	105A(73.5A)		20514001444	3.8KG
DHPC-30050-OPEB-DC		50A(35A)	120A(84A)		285*188*114mm	3.8KG

DH直流系列端子定义

DH直流系列外形尺寸图


1、产品简介:

1. 概述

DH直流系列可编程智能伺服驱动器是一款通用、高性能、直流供电、结构紧凑的全数字伺服驱动器。主要应用于直线(DDL)、力矩(DDR)、音圈、有刷、无刷伺服电机的位置、速度、转矩控制。它能以独立可编程控制 (Stand-alone)、外部控制、或分布式网络控制三种模式运行,可支持增量编码器、模拟量正余弦(Sin/Cos)编码器、旋转变压器 (Resolver)、数字霍尔反馈。

2. 技术特点

- ◆控制模式:位置,速度,转矩;
- ◆运动模式: 电子齿轮, 电子凸轮, 比例联动, 点到点;
- ◆可编程保护:位置误差,过流,过压或欠压, |²t,输出短路过载等多方位保护功能;
- ◆驱动电机类型:无刷电机、有刷电机、直线电机、音圈电机等:
- ◆位置反馈:增量式编码器、霍尔、光栅尺,模拟量正余弦(Sin/Cos)编码器、旋转变压器(外加旋变解析卡):
- ◆脉冲响应频率最高可达2MHz,具有数字滤波功能;
- ◆RS232 串行接口,波特率可达115KB;
- ◆CAN2.0局域总线,兼容CANopen DS-402,波特率最高1MHz;
- ◆电源电压: 300VDC;

1.3 伺服驱动器电气规格

才		指令控制	方式	脉冲、±10V模拟量输入、CANopen、函数发生器、 轨迹索引、软件编程	
位			输入脉冲形态	包含"方向 + 脉冲"、"A、B 相正交脉冲"、"CW/CCW 脉冲"三种指令形态。	
置		脉冲指令	信号格式	差分输入、集电极开路	
控制	输入信号		最高脉冲频率	差分输入:(最大 2Mpps) 集电极开路:(最大 500Kpps)	
		模拟指令	电压范围	输入电压范围±10V	
		大101日 〈	输入阻抗	差分输入阻抗=5KΩ	
		指令控制	方式	PWM、±10V模拟量、函数发生器、软件编程	
			极性	PWM=0~100%,极性=1/0	
速		PWM	无极性	PWM=50% +/-50%	
度	<i>捡</i>) □	FVVIVI	频率范围	最小1kHz,最大100kHz	
控	输入信号		最小脉冲宽度	220ns	
制		模拟指令	电压范围	输入电压范围±10V	
		1天1以1日マ	输入阻抗	差分输入阻抗=5KΩ	
	指令控制方式		方式	PWM、±10V模拟量、函数发生器、软件编程	
			极性	PWM=0~100%,极性=1/0	
电		入信号 模拟指令	无极性	PWM=50% +/-50%	
流	<i>t</i> 公) <i>l</i> : 口		频率范围	最小1kHz,最大100kHz	
控	制八 信 万		最小脉冲宽度	220ns	
制			电压范围	输入电压范围±10V	
		代表1以1日一マ	输入阻抗	差分输入阻抗=5KΩ	
			端口数量	12(其中IN6、IN7、IN8、IN9、IN10为高速口,IN5内部用于电机温度保护)	
	*kr /⇒ to	A) INI	信号格式	NPN(低电平有效)	
/O	双子*	俞入IN	可设置功能	伺服使能,外部复位,正/反转限位,电机运转停止,高速模拟量采集控制,PWM同步信号输入,高速脉冲输入等	
信号			端口数量	3	
	数字输	出OUT	信号格式	NPN(低电平有效),可承受最大电流300mAdc,最高电压30Vdc	
			可设置功能	故障信号,抱闸控制,PWM同步信号,自定义事件, 轨迹状态,位置触发,程序控制	

		LED 指え	六	状态指示,CAN网络指示	
		RS-232	波特率	9600-115200	
		113 232	协议	全双工模式, ASCII或二进制格式	
功能	通信功能		波特率	20kbit/s-1Mbit/s	
다. 기기		CAN	协议	Canopen应用层DS -301V4.02	
			设备	DSP-402设备驱动和运动控制	
	保护功能			过压,过流,欠压,过载,过热,编码器异常,位置跟踪误差太大等保护	
	安装地点		点	无腐蚀气体, 可燃性气体等	
東	海拔高度		度	低于1000米	
使用环境		温度		0°C~+40°C	
下境	湿度			5%~80%RH,无水珠凝结	
	耐振动/耐冲击强度		· 强度	小于4.9m/s2/小于19.6m/s2	

2、接线端口定义

2.1 主电源输入端子J1

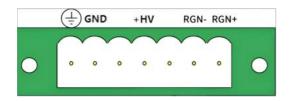


图2.1.1 欧规端子插座

图2.1.2 栅栏端子插座

+HV 300VDC GND 地 RGN- 制动电阻接口 RGN+

2.2 电机接线口J2

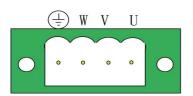


图2.2.1 欧规端子插座

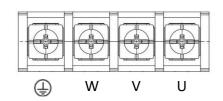


图2.2.2 栅栏端子插座

U	电机线U
V	电机线V
W	电机线W
(1)	电机线PE

2.3 内部24v输出端子J3

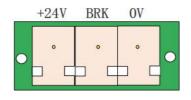


图2.3 欧规端子插座

+24V	24v输出200mA (不可以给电机抱闸供电)
BRK	接电机抱闸线
0V	0V

2.4 电机编码器输入端J4

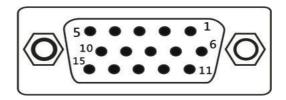


图 2.4.1 三排DB15母座

引脚	定义	功能	引脚	定义	功能
1	A+	电机编码器A+输入	9	V+	电机编码器V+输入
2	Α-	电机编码器A输入	10	COS+	COS+
3	B+	电机编码器B+输入	11	W+	电机编码器W+输入
4	B-	电机编码器B输入	12	SIN-	SIN-
5	Z+	电机编码器Z+输入	13	+5V	电机信号线+5V
6	Z-	电机编码器Z-输入	14	OV	电机信号线GND
7	U+	电机编码器U+输入	15	COS-	COS-
8	SIN+	SIN+			

2.5 控制信号I/O端子J5

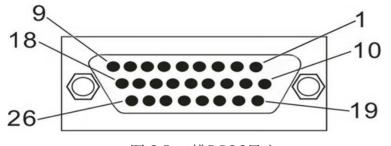


图 2.5 三排DB26母座

引脚	名称	功能	引脚	名称	功能
1	FG	大地	14	OUT2	自定义
2	IN5	电机温度检测	15	OUT3	自定义
3	IN1	使能	16	EONA+	电机编码器输出信号A+
4	IN2	自定义	17	EONA-	电机编码器输出信号A-
5	IN3	自定义	18	EONB+	电机编码器输出信号B+
6	IN4	自定义	19	EONB-	电机编码器输出信号B-
7	IN6	自定义	20	EONZ+	电机编码器输出信号Z+
8	IN7	自定义	21	EONZ-	电机编码器输出信号Z-
9	IN8	自定义	22	+5V	5V电源输出(400mA)
10	IN9	自定义	23	GND	电源地
11	IN10	自定义	24	Ref+	模拟量正输入
12	IN11	自定义	25	Ref-	模拟量负输入
13	OUT1	自定义	26	IN12	自定义

2.6 CAN通信端子J6&J7

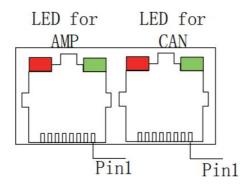
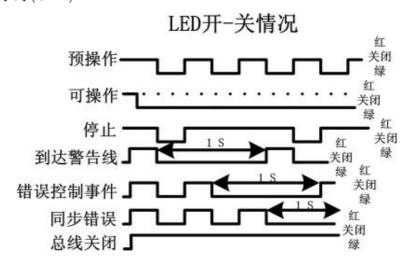


图2.6 RJ45 8针水晶头座

引脚	定义	名称
1	CANH	CANH信号
2	CANL	CANL信号
3/7	GND	通讯电源地

注: J6,J7 中两个RJ45端口定义相同,方便通信时桥接。


2.7 指示灯状态定义

2.7.1 驱动器状态指示灯(AMP)

红/绿双色LED灯通过颜色的变化、是否闪烁,来告诉我们驱动器的状态。可能的情况有:

绿色/不闪	驱动器OK并使能
绿色/慢闪	驱动器 OK 但没有使能,使能后即可运行
绿色/快闪	正限位或负限位开关有效,电机只会向没有被限位开关禁止的方向运动
红色/固定	瞬时故障,故障排除后放大器需要重启操作
红色/闪烁	锁住故障,重启放大器即可恢复操作

2.7.2 CAN通信指示灯(CAN)

2.8 串行通信端子J8

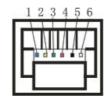
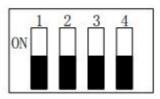



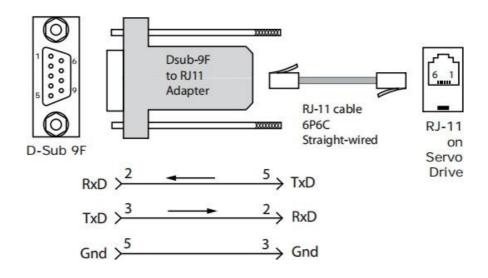
图 2.8 RJ11 6针水晶头座

引脚	定义	名称
2	RXD	RS232 通讯接收端
3	GND	通讯电源地
5	TXD	RS232 通讯发送端

2.9 SW 驱动器CAN地址拨码开关

当软件上设置选择是用外部拨码开关时,本开关拨码有效。开关编码按照BCD码顺序,拨码拨到ON时有效。

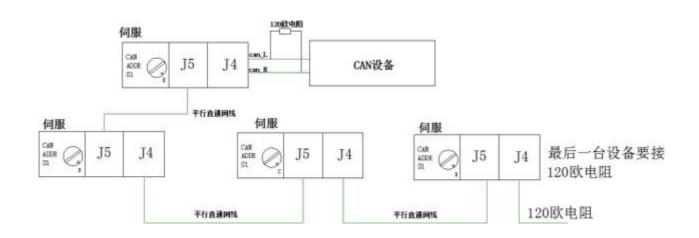
SW拨码开关对应站号


SW开关序号	对应站号
1	1
2	2
3	4
4	8

例如要设置站号为3,就是SW开关的1,2拨到ON其他为off,1+2=3,如果要设置站号是12,SW开的3,4拨到ON,其他为ooff,4+8=12

3、控制端口硬件说明

3.1 RS-232通讯(RXD, TXD, GND)


串行端口为全双工、三线制(RXD, TXD, GND)RS-232, 从9600到115200波特率,通过调机软件或串口调试工具使用接线端子为J6,调试线如下图

3.2 CAN总线(CANH,CANL,GND)

CAN 总线基于CAN V2.0B物理层上,CAN物理层信号有CANH、CANL和GND,采用CANope协议进行通信。电气接口采用TJA1051高速收发器。驱动器CAN通信的物理地址范围为0~127,默认地址为0。可通过RS-232通信端口进行地址更改,复位或重启驱动器生效。通过CAN通信接口,可实现一个数据高速率和低成本多轴运动控制系统的非常有效的组合。接线端子为J4、J5。

CAN网络可以如下图连接:

3.3 模拟量信号输入(Ref+,Ref-)

±10Vdc差分模拟量输入,最大输入电压±10Vdc,输入阻抗约5.36k,分辨率12位。该模拟量信号可用于转矩、转速、位置控制。

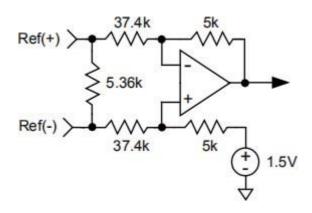
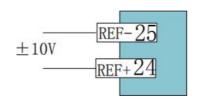



图 3.3.1 模拟量硬件输入电路

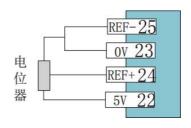


图3.3.3 内部电源模拟量输入接线

3.4 数字输入信号

DH系列伺服具有12个数字输入口,11个具备可编程的功能,驱动的功率PWM输出及安全使能固定由IN1控制,通过这个端口可实现功率电路的硬件切断。

根据控制器的端口功能以及硬件RC滤波时间,输入信号端口分为通用输入端口以及高速输入端口,每个端口的功能都可采用编程更改。

3.4.1 通用输入信号端子(IN1、IN2、IN3、IN4、IN5)

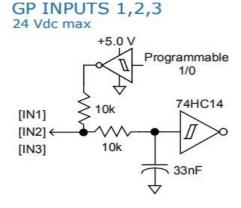


图3.4.1 IN1- IN3硬件输入电路

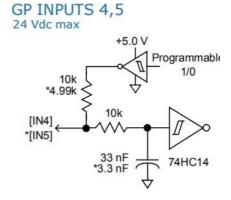
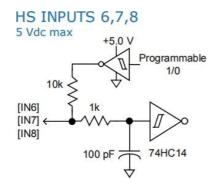



图3.4.2 IN4-IN5硬件输入电路

IN1、IN2、IN3、IN4、IN5为通用输入信号端子,控制逻辑及功能可通过编程设置。IN1固定用于驱动器的使能控制,IN5主要用于电机温度保护输入,通过软件参数设置高/低电平生效。

3.4.2 高速输入信号端子(IN6、IN7、IN8、IN9、IN10)

IN6、IN7、IN8、IN9、IN10为高速输入端子,除了可作为常规通用端子使用外,还可以作为高速脉冲输入,脉冲输入口固定为(IN9,IN10)

HS & GP* INPUTS 9,10,11,12 5 (*24) Vdc max +5.0 V

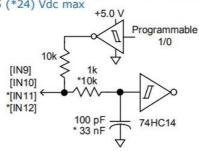


图 3.4.3 IN6,7,8内部硬件图图

图3.4.4 IN9,10,11,12内部硬件图

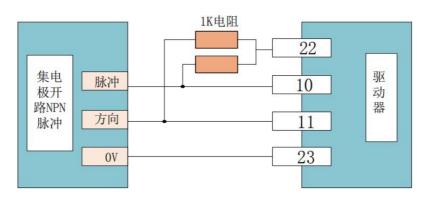


图 3.4.5 集电极开路NPN脉冲输入图

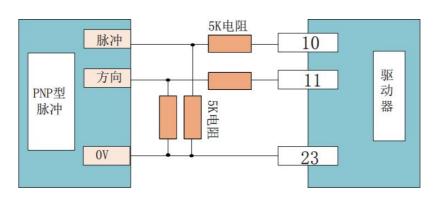


图 3.4.6 PNP脉冲输入图

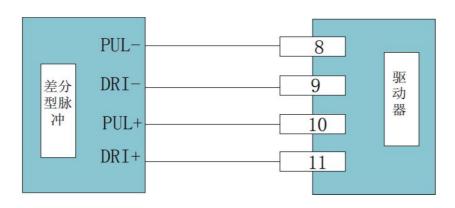


图 3.4.7 差分脉冲输入图

3.5 数字输出信号

DH系列驱动器具有3个数字输出口,数字输出IO端口采用MOSFET开路输出,内部通过二极管 串联1k电阻的方式上拉至5V,端口可承受电压至24Vdc,电流最大可承受300mAdc。端口的输出功能可根据内部编程更改。

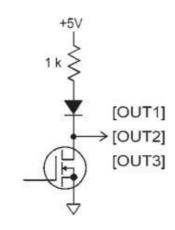


图 3.5 数字输出硬件电路

3.5.1 电机抱闸制动

数字输出端口OUT4可以设置成电机抱闸制动控制,因为OUT4内部已经有了续流二极管所以外面不需要加。在没有故障及电机使能的情况下给制动器通电松开抱闸,在有任何故障的情况下迅速断开制动器电源将电机停止。

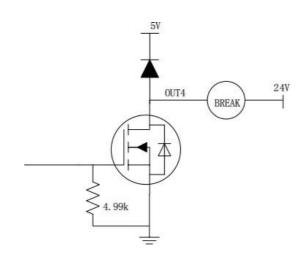


图 3.5.1 电机抱闸制动器外接电路

3.6 PWM信号输入

可通过PWM信号对电机进行转速、转矩控制,包括单端PWM占空比+方向信号和单端PWM占空比±50%调制。

3.6.1单端PWM占空比=0~100%脉冲控

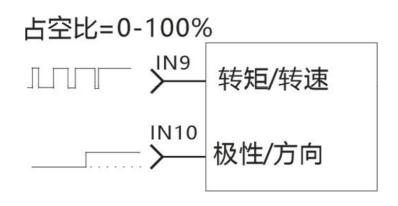
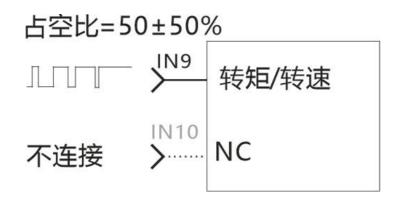
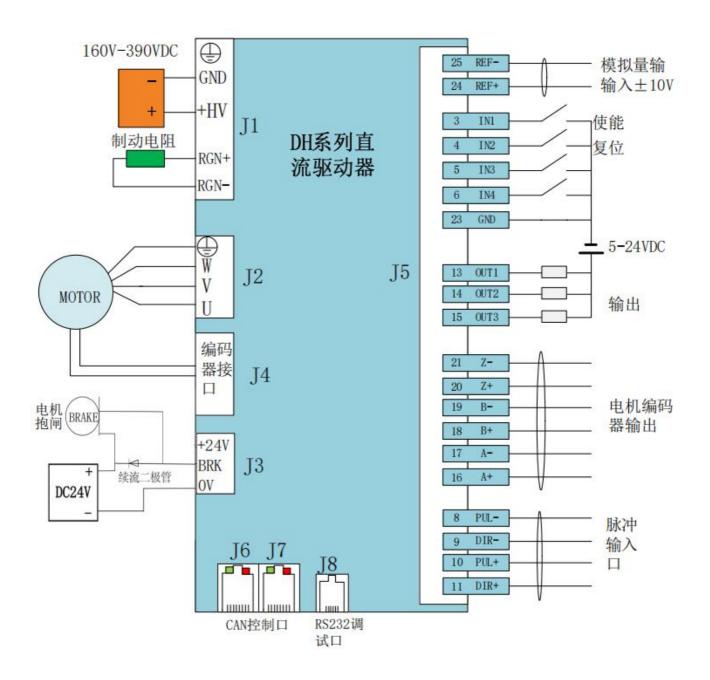


图 3.6.1 100%占空比+方向控制

3.6.2 单端PWM占空比=50%±50%脉冲控制




图 3.6.2 50%±50%占空比控制

4、驱动器参数设定

DH系列驱动器可以通过RS232串口,通过调机软件可以参数设置、监控电机状态、采集数据波形等。快速直观的完成系统调试。详细使用请查看调试软件的使用说明。

5、系统接线图

5.1 典型接线图

说明,

- 1.输入端子IN1,IN2,IN3,IN4,IN5,IN11,IN12是普通端口可以接收NPN和PNP的信号, 最高输入电压24V
- 2. IN6,IN7,IN8,IN9,IN10是高速输入口,最高输入电压5V
- 3. +AUXHV是辅助电源,有需要的可以接,如果接上,当+HV断开电源时+AUXHV通电的时候通信保持,但是发命令不会有动作

联系方式

深圳市欧诺克科技有限公司

电话: 0755-27387873 27381841

邮箱: onke@sz-onk.com

地址: 宝安区福海街道怀德翠湖工业园13栋

修订记录

日期	此十二	修订内容		
	版本号	修改处	修改内容	
20241228	V0.1	/	新版本	